Sains Malaysiana 54(3)(2025): 839-868
http://doi.org/10.17576/jsm-2025-5403-18
Potentially Dysregulated Cholesterol, Cellular
Interaction, Immune, and Collagen in NTCU-Induced Lung Squamous Cell Carcinoma in
vivo and LUSC Patients
(Kolesterol Berpotensi Disregulasi, Interaksi Sel, Imun dan Kolagen dalam Karsinoma Sel Skuamosa Paru-paru Aruhan NTCU in vivo dan Pesakit LUSC)
MUHAMMAD ASYAARI ZAKARIA1,4,
AMNANI AMINUDDIN2, NOR FADILAH RAJAB3, SITI FATHIAH MASRE1,* & ENG WEE
CHUA2
1Centre for
Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
2Centre for Drug
and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
3Centre for Healthy
Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia,
50300 Kuala Lumpur, Malaysia
4Faculty of
Pharmacy and Health Sciences, Universiti Kuala
Lumpur-Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
Received: 10 October 2024/Accepted: 26 November 2024
Abstract
Lung
squamous cell carcinoma (LUSC) is a deadly cancer, characterized by its complex
genetic profiles. Additionally, the molecular mechanisms and etiology
underlying LUSC growth are less extensively characterized as compared to
adenocarcinoma subtype of lung cancer. Therefore, it is essential to elucidate
the molecular mechanisms of LUSC in vivo and by using the human database to understand the disease. A
LUSC BALB/c mice model was established using N-nitroso-tris-chloroethylurea (NTCU). After termination of mice, the lung tissues were subjected to RNA
sequencing, followed by gene set enrichment analysis (GSEA) to identify the
enriched pathways. Subsequently, the pathogenic single nucleotide polymorphism
(SNP) was determined and enriched using g:Profiler. The
transcriptomic profile of human LUSC patients was obtained and analyzed from
The International Cancer Genome Consortium (ICGC). The impact of pathogenic
simple somatic mutation (SSM) in human LUSC was determined using the Combined
Annotation Dependent Depletion (CADD) score, which was also enriched using g:Profiler. Additionally, the enriched pathway of
‘Treatment-responsive’ was compared with ‘Non-responsive’ LUSC patients’
post-treatment. All pathway analysis was referred to the Reactome database, and an adjusted p-value ≤ 0.05 was considered
statistically significant. The top pathway enriched in both mice and human LUSC showed
that cholesterol, cellular interaction, immune system, and collagen were
significantly affected. Briefly, this study identified important biological pathways that may
contribute to LUSC development and hold potential as targets for LUSC
therapy in the future.
Keywords: Gene set enrichment analysis (GSEA); lung squamous cell carcinoma (LUSC);
RNA sequencing; simple somatic mutation (SSM); single nucleotide polymorphism
(SNP)
Abstrak
Karsinoma sel skuamus paru-paru (LUSC) adalah kanser yang boleh membawa maut, dicirikan oleh profil genetiknya yang kompleks. Tambahan pula, mekanisme molekul dan etiologi yang mendasari pertumbuhan LUSC adalah kurang dikaji secara mendalam berbanding subjenis adenokarsinoma kanser paru-paru. Oleh itu, adalah penting untuk mengetahui mekanisme molekul LUSC secara in vivo dan dengan menggunakan pangkalan data manusia untuk memahami penyakit ini. Model tikus BALB/c LUSC telah dibangunkan menggunakan N-nitroso-tris-kloroetilureum (NTCU). Selepas mencit dikorbankan, tisu paru-paru dianalisis dengan penjujukan RNA, diikuti dengan analisis pengayaan set gen (GSEA) untuk mengenal pasti laluan yang diperkaya. Seterusnya, polimorfisme nukleotida tunggal (SNP) yang patogen telah ditentukan dan diperkaya menggunakan g:Profiler. Profil transkriptomik pesakit LUSC manusia diperoleh dan dianalisis daripada Konsortium Genom Kanser Antarabangsa (ICGC). Kesan mutasi somatik ringkas (SSM) yang patogen dalam LUSC manusia ditentukan menggunakan skor Pengurangan Bergantung Anotasi Gabungan (CADD), yang juga diperkaya menggunakan g:Profiler. Tambahan lagi, laluan yang diperkaya bagi pesakit LUSC 'Responsif-rawatan' dibandingkan dengan pesakit 'Tidak responsif' selepas rawatan. Semua analisis laluan dirujuk kepada pangkalan data Reactome dan nilai p terlaras ≤ 0.05 dianggap signifikan secara statistik. Laluan teratas yang diperkaya dalam kedua-dua LUSC model mencit dan manusia mendedahkan penjejasan signifikan kolesterol, interaksi sel, sistem imun dan kolagen. Ringkasnya, kajian ini mengenal pasti laluan biologi penting yang mungkin menyumbang kepada perkembangan LUSC dan berpotensi dijadikan sebagai sasaran terapi LUSC pada masa hadapan.
Kata kunci: Analisis pengayaan set gen (GSEA); karsinoma sel skuamus paru-paru (LUSC); mutasi somatik ringkas (SSM); penjujukan RNA; polimorfisme nukleotida tunggal (SNP)
REFERENCES
Alipour,
M., Moghanibashi, M., Naeimi, S. & Mohamadynejad, P. 2024. Integrative bioinformatics analysis
reveals ECM and nicotine-related genes in both LUAD and LUSC, but different
lung fibrosis-related genes are involved in LUAD and LUSC. Nucleosides,
Nucleotides & Nucleic Acids 43(9): 915-934.
Anders,
S., Pyl, P.T. & Huber, W. 2015. HTSeq - a Python framework to work with high-throughput
sequencing data. Bioinformatics 31(2): 166-169.
Anusewicz, D.,
Orzechowska, M. & Bednarek, A.K. 2020. Lung squamous cell carcinoma and
lung adenocarcinoma differential gene expression regulation through pathways of
Notch, Hedgehog, Wnt, and ErbB signalling. Scientific Reports 10(1): 21128.
Ardi, V.C., Deryugina,
E.I. & Quigley, J.P. 2020. Neutrophil elastase facilitates cancer cell
motility via induction of Akt signaling pathway. The FASEB Journal 34(S1): 1-1.
Ashrafi,
A., Akter, Z., Modareszadeh, P., Modareszadeh,
P., Berisha, E., Alemi, P.S., Chacon Castro, M.D.C., Deese, A.R. & Zhang,
L. 2022. Current landscape of therapeutic resistance in lung cancer and
promising strategies to overcome resistance. Cancers 14(19): 4562.
Bhargav,
A., Bhalla, N., Manoharan, S., Singh, G., Yadav, S.K. & Singh, A.K. 2023.
Role of various immune cells in the tumor microenvironment. Diseases &
Research 3(1): 30-40.
Bordeleau,
F., Mason, B.N., Lollis, E.M., Mazzola, M., Zanotelli, M.R., Somasegar, S.,
Califano, J.P., Montague, C., LaValley, D.J., Huynh, J., Mencia-Trinchant,
N., Negrón Abril, Y.L., Hassane,
D.C., Bonassar, L.J., Butcher, J.T., Weiss, R.S.
& Reinhart-King, C.A. 2017. Matrix stiffening promotes a tumor vasculature
phenotype. Proceedings of the National Academy of Sciences of the United
States of America 114(3): 492-497.
Cai,
F., Miao, Y., Liu, C., Wu, T., Shen, S., Su, X. & Shi, Y. 2018. Pyrroline‑5‑carboxylate
reductase 1 promotes proliferation and inhibits apoptosis in non‑small
cell lung cancer. Oncology Letters 15(1): 731-740.
Cancer
Genome Atlas Research Network. 2012. Comprehensive genomic characterization of
squamous cell lung cancers. Nature 489(7417): 519-525.
Castellano,
B.M., Thelen, A.M., Moldavski,
O., Feltes, M., Van Der Welle, R.E.N., Mydock-McGrane, L., Jiang, X., van Eijkeren, R.J., Davis, O.B., Louie, S.M., Perera, R.M.,
Covey, D.F., Nomura, D.K., Ory, D.S. & Zoncu,
R. 2017. Lysosomal cholesterol
activates mTORC1 via an SLC38A9–Niemann-Pick C1 signaling complex. Science 355(6331): 1306-1311.
Cau,
F., Fanni, D., Manchia, M., Gerosa, C., Piras, M., Murru, R., Paribello, P., Congiu, T., Coni, P., Pichiri, G., Piludu, M., Van Eyken, P., Gibo,
Y., La Nasa, G., Orrù, G., Scano, A., Coghe, F., Saba,
L., Castagnola, M. & Faa, G. 2022.
Expression of L1 cell adhesion molecule (L1CAM) in extracellular vesicles in
the human spinal cord during development. European Review for Medical and
Pharmacological Sciences 26(17): 6273-6282.
Cheng,
H., Shcherba, M., Pendurti, G., Liang, Y., Piperdi, B. & Perez-Soler, R. 2014. Targeting the
PI3K/AKT/mTOR pathway: Potential for lung cancer treatment. Lung Cancer Management 3(1): 67-75.
Choi,
Y., Sims, G.E., Murphy, S., Miller, J.R. & Chan, A.P. 2012. Predicting the
functional effect of amino acid substitutions and indels. PLoS ONE 7(10): e46688.
Christensen,
E.M., Patel, S.M., Korasick, D.A., Campbell, A.C.,
Krause, K.L., Becker, D.F. & Tanner, J.J. 2017. Resolving the
cofactor-binding site in the proline biosynthetic enzyme human
pyrroline-5-carboxylate reductase 1. Journal of Biological Chemistry 292(17): 7233-7243.
Coradini, D.,
Ambrogi, F. & Infante, G. 2023. Cholesterol de novo biosynthesis in
paired samples of breast cancer and adjacent histologically normal tissue:
Association with proliferation index, tumor grade, and recurrence-free survival. Archives of Breast Cancer 10(2): 187-199.
Dennis,
K.L., Blatner, N.R., Gounari,
F. & Khazaie, K. 2013. Current status of IL-10
and regulatory T-cells in cancer. Current Opinion in Oncology 25(6):
637.
Ding,
L., Getz, G., Wheeler, D.A., Mardis, E.R., McLellan, M.D., Cibulskis,
K., Sougnez, C., Greulich, H.,
Muzny, D.M., Morgan, M.B., Fulton, L., Fulton, R.S.,
Zhang, Q., Wendl, M.C., Lawrence, M.S.,
Larson, D.E., Chen, K., Dooling, D.J., Sabo, A.,
Hawes, A.C., Shen, H., Jhangiani, S.N., Lewis, L.R.,
Hall, O., Zhu, Y., Mathew, T., Ren, Y., Yao, J.,
Scherer, S.E., Clerc, K., Metcalf, G.A., Ng, B.,
Milosavljevic, A., Gonzalez-Garay, M.L., Osborne, J.R.,
Meyer, R., Shi, X., Tang, Y., Koboldt, D.C.,
Lin, L., Abbott, R., Miner, T.L., Pohl, C.,
Fewell, G., Haipek, C., Schmidt, H.,
Dunford-Shore, B.H., Kraja, A., Crosby, S.D., Sawyer, C.S.,
Vickery, T., Sander, S., Robinson, J., Winckler, W.,
Baldwin, J., Chirieac, L.R., Dutt, A., Fennell, T., Hanna, M.,
Johnson, B.E., Onofrio, R.C., Thomas, R.K., Tonon, G.,
Weir, B.A., Zhao, X., Ziaugra, L.,
Zody, M.C., Giordano, T., Orringer, M.B.,
Roth, J.A., Spitz, M.R., Wistuba, I.I., Ozenberger, B., Good, P.J., Chang, A.C.,
Beer, D.G., Watson, M.A., Ladanyi, M., Broderick, S.,
Yoshizawa, A., Travis, W.D., Pao, W., Province, M.A.,
Weinstock, G.M., Varmus, H.E., Gabriel, S.B., Lander, E.S.,
Gibbs, R.A., Meyerson, M. & Wilson, R.K. 2008. Somatic mutations affect key pathways in lung
adenocarcinoma. Nature 455(7216): 1069-1075.
Dobin,
A., Davis, C. A., Schlesinger, F., Drenkow, J.,
Zaleski, C., Jha, S., Batut, P., Chaisson, M. & Gingeras, T.R. 2013. STAR: Ultrafast universal RNA-seq
aligner. Bioinformatics 29(1): 15-21.
Dou,
X., Menkari, C., Mitsuyama,
R., Foroud, T., Wetherill, L., Hammond, P., Suttie, M., Chen,
X., Chen, S.Y., Charness, M.E. & Collaborative
Initiative on Fetal Alcohol Spectrum Disorders. 2018.
L1 coupling to ankyrin and the spectrin-actin
cytoskeleton modulates ethanol inhibition of L1 adhesion and ethanol
teratogenesis. The FASEB Journal 32(3): 1364-1374.
Dwyer-Nield,
L.D., McArthur, D.G., Tennis, M.A., Merrick, D.T. & Keith, R.L. 2021. An
improved murine premalignant squamous cell model: Tobacco smoke exposure
augments NTCU-induced murine airway dysplasia. Cancer Prevention Research 14(3): 307-312.
Emmons,
T. R., Giridharan, T., Singel, K. L., Khan, A. N. M. N. H., Ricciuti, J.,
Howard, K., Silva-Del Toro, S.L., Debreceni, I.L., Aarts, C.E.M.,
Brouwer, M.C., Suzuki, S., Kuijpers, T.W., Jongerius, I., Allen, L.H., Ferreira, V.P., Schubart, A.,
Sellner, H., Eder, J., Holland, S.M., Ram, S., Lederer, J.A., Eng, K.H., Moysich, K.B., Odunsi, K., Yaffe, M.B., Zsiros, E. & Segal, B.H. 2021. Mechanisms driving neutrophil-induced T-cell immunoparalysis in ovarian cancer. Cancer Immunology Research 9(7): 790-810.
Fang,
B., Mehran, R.J., Heymach, J.V. & Swisher, S.G.
2015. Predictive biomarkers in precision medicine and drug development against
lung cancer. Chinese Journal of Cancer 34(3): 1-15.
Fang,
S., Dai, Y., Mei, Y., Yang, M., Hu, L., Yang, H., Guan, X. & Li, J. 2019.
Clinical significance and biological role of cancer-derived Type I collagen in
lung and esophageal cancers. Thoracic Cancer 10(2): 277-288.
Foretz, M., Pacot, C., Dugail, I.,
Lemarchand, P., Guichard, C., Le Lièpvre, X., Berthelier-Lubrano,
C., Spiegelman, B., Kim, J.B., Ferré, P. & Foufelle, F. 1999.
ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene
expression by glucose. Molecular and Cellular Biology 19(5): 3760-3768.
Gandara,
D.R., Hammerman, P.S., Sos, M.L., Lara, P.N. &
Hirsch, F.R. 2015. Squamous cell lung cancer: From tumor genomics to cancer
therapeutics. Clinical Cancer Research 21(10): 2236-2243.
Ghosh,
M., Dwyer-Nield, L.D., Kwon, J.B., Barthel, L., Janssen, W.J., Merrick, D.T.
& Keith, R.L. 2015. Tracheal dysplasia precedes bronchial dysplasia in
mouse model of N-nitroso trischloroethylurea induced
squamous cell lung cancer. PLoS ONE 10(4): e0122823.
Gong,
N., Wu, R., Ding, B. & Wu, W. 2020. ERBB4 promotes the progression of
inflammatory breast cancer through regulating PDGFRA. Translational Cancer
Research 9(5): 3266.
Gonzalez,
H., Hagerling, C. & Werb, Z. 2018. Roles of the
immune system in cancer: From tumor initiation to metastatic progression. Genes
& Development 32(19-20): 1267-1284.
González,
L.A., Melo-González, F., Sebastián, V.P., Vallejos, O.P., Noguera, L.P., Suazo,
I.D., Schultz, B.M., Manosalva, A.H., Peñaloza, H.F., Soto, J.A., Parker, D., Riedel, C.A.,
González, P.A., Kalergis, A.M. & Bueno, S.M. 2021. Characterization of the anti-inflammatory capacity of
IL-10-producing neutrophils in response to Streptococcus pneumoniae infection. Frontiers in Immunology 12: 638917.
Gu,
L., Saha, S.T., Thomas, J. & Kaur, M. 2019. Targeting cellular cholesterol
for anticancer therapy. The FEBS Journal 286(21): 4192-4208.
Gu,
W., Zhuang, W., Zhuang, M., He, M. & Li, Z. 2023. DNA damage response and
repair gene mutations are associated with tumor mutational burden and outcomes
to platinum-based chemotherapy/immunotherapy in advanced NSCLC patients. Diagnostic
Pathology 18(1): 119.
Guenzi, E., Pluvy, J., Guyard, A., Nguenang,
M., Rebah, K., Benrahmoune,
Z., Lamoril, J., Cazes, A., Gounant, V., Brosseau, S., Boileau, C., Zalcman, G. & Théou-Anton, N. 2021. A new KIF5B–ERBB4 gene fusion in a lung adenocarcinoma patient. ERJ Open Research 7(1):
00582-2020.
Hamilton,
J.A. & Achuthan, A. 2013. Colony stimulating factors and myeloid cell
biology in health and disease. Trends in Immunology 34(2): 81-89.
Hartmann,
P., Trufa, D.I., Hohenberger,
K., Tausche, P., Trump, S., Mittler, S., Geppert,
C.I., Rieker, R.J., Schieweck, O., Sirbu, H., Hartmann, A. & Finotto, S. 2023. Contribution of serum lipids and cholesterol cellular
metabolism in lung cancer development and progression. Scientific Reports 13(1): 5662.
Henry,
C.J., Billups, L.H., Avery, M.D., Rude, T.H., Dansie, D.R., Lopez, A., Sass,
B., Whitmire, C.E. & Kouri, R.E. 1981. Lung cancer model system using
3-methylcholanthrene in inbred strains of mice. Cancer Research 41: 5027-5032.
Hoppstädter, J.,
Dembek, A., Höring, M., Schymik,
H. S., Dahlem, C., Sultan, A., Wirth, N., Al-Fityan, S., Diesel, B., Gasparoni,
G., Walter, J., Helms, V., Huwer, H., Simon, M., Liebisch, G., Schulz, M.H.
& Kiemer, A.K. 2021. Dysregulation of cholesterol
homeostasis in human lung cancer tissue and tumour-associated
macrophages. EBioMedicine 72: 103578.
Hu, X., Xu, H., Xue, Q., Wen, R., Jiao, W. & Tian, K.
2021. The role of ERBB4 mutations in the prognosis of advanced non-small cell
lung cancer treated with immune checkpoint inhibitors. Molecular Medicine 27: 126.
Huang,
P., Nedelcu, D., Watanabe, M., Jao, C., Kim, Y., Liu, J. & Salic, A. 2016.
Cellular cholesterol directly activates smoothened in hedgehog signaling. Cell 166(5): 1176-1187.
Hulsen,
T., de Vlieg, J. & Alkema, W. 2008. BioVenn–A web application for the comparison and
visualization of biological lists using area-proportional Venn diagrams. BMC
Genomics 9(1): 488.
Janiszewska,
M., Primi, M.C. & Izard, T. 2020. Cell adhesion
in cancer: Beyond the migration of single cells. Journal of Biological
Chemistry 295(8): 2495-2505.
Jiang,
S., Wang, X., Song, D., Liu, X., Gu, Y., Xu, Z., Wang, X., Zhang,
X., Ye, Q., Tong, Z., Yan, B., Yu, J., Chen, Y., Sun, M., Wang, Y. & Gao,
S. 2019. Cholesterol induces
epithelial-to-mesenchymal transition of prostate cancer cells by suppressing
degradation of EGFR through APMAP. Cancer Research 79(12): 3063-3075.
Kawano,
M., Mabuchi, S., Matsumoto, Y., Sasano, T., Takahashi, R., Kuroda, H., Kozasa, K., Hashimoto, K., Isobe, A., Sawada, K.,
Hamasaki, T., Morii, E. & Kimura, T. 2015.
The significance of G-CSF expression and myeloid-derived suppressor cells in
the chemoresistance of uterine cervical cancer. Scientific Reports 5(1):
18217.
Khoshnoodi, J.,
Sigmundsson, K., Öfverstedt, L-G., Skoglund, U., Öbrink, B., Wartiovaara, J. &
Tryggvason, K. 2003. Nephrin promotes cell-cell
adhesion through homophilic interactions. The American Journal of Pathology 163(6): 2337-2346.
Kim,
S.H., Baek, S.I., Jung, J., Lee, E.S., Na, Y., Hwang, B.Y., Roh,
Y.S., Hong, J.T., Han, S.B. & Kim, Y. 2022. Chemical inhibition of TRAF6-TAK1 axis as therapeutic
strategy of endotoxin-induced liver disease. Biomedicine &
Pharmacotherapy 155: 113688.
Kircher,
M., Witten, D.M., Jain, P., O’roak, B.J., Cooper,
G.M. & Shendure, J. 2014. A general framework for
estimating the relative pathogenicity of human genetic variants. Nature Genetics 46(3): 310-315.
Korpanty, G.J.,
Graham, D.M., Vincent, M.D. & Leighl, N.B. 2014.
Biomarkers that currently effect clinical practice in lung cancer: EGFR, ALK,
MET, ROS-1 and KRAS. Frontiers in Oncology 4: 204.
Kourtidis,
A., Lu, R., Pence, L.J. & Anastasiadis, P.Z. 2017. A central role for
cadherin signaling in cancer. Experimental Cell Research 358(1): 78-85.
Kowanetz, M., Wu,
X., Lee, J., Tan, M., Hagenbeek, T., Qu, X., Yu, L., Ross,
J., Korsisaari, N., Cao, T., Bou-Reslan,
H., Kallop, D., Weimer, R., Ludlam, M.J., Kaminker, J.S., Modrusan, Z., van
Bruggen, N., Peale, F.V., Carano, R., Meng, Y.G. & Ferrara, N. 2010. Granulocyte-colony stimulating factor promotes lung
metastasis through mobilization of Ly6G+ Ly6C+ granulocytes. Proceedings of
the National Academy of Sciences 107(50): 21248-21255.
Kuzu,
O.F., Gowda, R., Noory, M.A. & Robertson, G.P. 2017. Modulating cancer cell
survival by targeting intracellular cholesterol transport. British Journal
of Cancer 117(4): 513-524.
Lau,
C., Killian, K.J., Samuels, Y. & Rudloff, U. 2014. ERBB4 mutation analysis:
Emerging molecular target for melanoma treatment. Molecular Diagnostics for
Melanoma: Methods and Protocols 1102: 461-480.
Lewis,
C.A., Brault, C., Peck, B., Bensaad, K., Griffiths, B., Mitter, R.,
Chakravarty, P., East, P., Dankworth, B., Alibhai, D., Harris, A.L. &
Schulze, A. 2015. SREBP maintains lipid
biosynthesis and viability of cancer cells under lipid-and oxygen-deprived
conditions and defines a gene signature associated with poor survival in
glioblastoma multiforme. Oncogene 34(40): 5128-5140.
Li,
J., Liu, N., Tang, L., Yan, B., Chen, X., Zhang, J. & Peng, C. 2020. The
relationship between TRAF6 and tumors. Cancer Cell International 20: 429.
Liang,
S., Xu, Y., Tan, F., Ding, L., Ma, Y. & Wang, M. 2018. Efficacy of icotinib in advanced lung squamous cell carcinoma. Cancer
Medicine 7(9): 4456-4466.
Liberzon, A.,
Subramanian, A., Pinchback, R., Thorvaldsdóttir, H.,
Tamayo, P. & Mesirov, J. P. 2011. Molecular
signatures database (MSigDB) 3.0. Bioinformatics 27(12): 1739-1740.
Liu,
C.C., Lin, J.H., Hsu, T.W., Hsu, J.W., Chang, J.W., Su, K., Hsu, H.S. &
Hung, S.C. 2018. Collagen XVII/laminin-5 activates epithelial-to-mesenchymal
transition and is associated with poor prognosis in lung cancer. Oncotarget 9(2): 1656-1672.
Liu,
L., Wu, Y., Zhang, C., Zhou, C., Li, Y., Zeng, Y., Zhang, C., Li, R., Luo, D., Wang,
L., Zhang, L., Tu, S., Deng, H., Luo, S., Chen, Y.G., Xiong, X. & Yan, X. 2020. Cancer-associated adipocyte-derived G-CSF promotes
breast cancer malignancy via Stat3 signaling. Journal of Molecular Cell
Biology 12(9): 723-737.
Love,
M.I., Huber, W. & Anders, S. 2014. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biology 15(12): 550.
Lucas,
L.M., Dwivedi, V., Senfeld, J.I., Cullum, R.L., Mill,
C.P., Piazza, J.T., Bryant, I.N., Cook, L.J., Miller, S.T., Lott 4th,
J.H., Kelley, C.M., Knerr, E.L., Markham, J.A., Kaufmann, D.P., Jacobi, M.A.,
Shen, J. & Riese 2nd, D.J. 2022. The yin and yang of ERBB4:
tumor suppressor and oncoprotein. Pharmacological Reviews 74(1): 18-47.
Masroor,
M., Javid, J., Mir, R., Mohan, A., Ray, P.C. & Saxena, A. 2016. Prognostic
significance of serum ERBB 3 and ERBB 4 mRNA in lung adenocarcinoma patients. Tumor
Biology 37: 857-863.
Mayfosh, A.J., Baschuk, N. & Hulett, M.D. 2019. Leukocyte heparanase: A double-edged sword in tumor progression. Frontiers
in Oncology 9: 331.
McKenna,
A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A.,
Garimella, K., Altshuler, D., Gabriel, S., Daly, M. & DePristo,
M.A. 2010. The genome analysis toolkit: A mapreduce framework for analyzing next-generation DNA sequencing data. Genome Research 20(9): 1297-1303.
Missiaen, R.,
Mazzone, M. & Bergers, G. 2018. The reciprocal function and regulation of
tumor vessels and immune cells offers new therapeutic opportunities in cancer. Seminars
in Cancer Biology 52: 107-116.
Mok,
E.H.K. & Lee, T.K.W. 2020. The pivotal role of the dysregulation of
cholesterol homeostasis in cancer: Implications for therapeutic targets. Cancers 12(6): 1410.
Mollinedo,
F. 2019. Neutrophil degranulation, plasticity, and cancer metastasis. Trends
in Immunology 40(3): 228-242.
Mootha,
V.K., Lindgren, C.M., Eriksson, K.F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstråle,
M., Laurila, E., Houstis, N., Daly, M.J., Patterson,
N., Mesirov, J.P., Golub, T.R., Tamayo, P.,
Spiegelman, B., Lander, E.S., Hirschhorn, J.N., Altshuler, D. & Groop, L.C. 2003. PGC-1α-responsive genes involved in oxidative
phosphorylation are coordinately downregulated in human diabetes. Nature Genetics 34(3): 267-273.
Morris,
K.T., Khan, H., Ahmad, A., Weston, L.L., Nofchissey, R.A., Pinchuk, I.V. &
Beswick, E.J. 2014. G-CSF and G-CSFR are highly expressed in human gastric and
colon cancers and promote carcinoma cell proliferation and migration. British
Journal of Cancer 110(5): 1211-1220.
Morris,
K.T., Castillo, E.F., Ray, A.L., Weston, L.L., Nofchissey, R.A., Hanson, J.A.,
Samedi, V.G., Pinchuk, I.V., Hudson, L.G. & Beswick, E.J. 2015. Anti-G-CSF
treatment induces protective tumor immunity in mouse colon cancer by promoting
NK cell, macrophage and T cell responses. Oncotarget 6(26): 22338.
Natarajan,
S., Foreman, K.M., Soriano, M.I., Rossen, N.S., Shehade, H., Fregoso, D.R., Eggold, J.T., Krishnan,
V., Dorigo, O., Krieg, A.J., Heilshorn, S.C., Sinha,
S., Fuh, K.C. & Rankin, E.B. 2019.
Collagen remodeling in the hypoxic tumor-mesothelial niche promotes ovarian
cancer metastasis. Cancer Research 79(9): 2271-2284.
Okazaki, T., Ebihara, S., Asada, M., Kanda, A., Sasaki, H.
& Yamaya, M. 2006. Granulocyte colony-stimulating factor promotes tumor
angiogenesis via increasing circulating endothelial progenitor cells and Gr1+
CD11b+ cells in cancer animal models. International Immunology 18(1): 1-9.
Pan,
J., Xiong, D., Zhang, Q., Szabo, E., Miller, M.S., Lubet, R.A., Wang, Y. & You,
M. 2018. Airway brushing as a new experimental methodology to detect airway
gene expression signatures in mouse lung squamous cell carcinoma. Scientific
Reports 8(1): 8895.
Raudvere, U.,
Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H. & Vilo, J. 2019.
g: Profiler: A web server for functional enrichment analysis and conversions of
gene lists (2019 update). Nucleic Acids Research 47(W1): W191-W198.
Riolobos, L., Gad,
E.A., Treuting, P.M., Timms, A.E., Hershberg, E.A., Corulli, L.R., Rodmaker, E. & Disis, M.L. 2019. The effect of mouse strain, sex,
and carcinogen dose on toxicity and the development of lung dysplasia and
squamous cell carcinomas in mice. Cancer Prevention Research 12(8): 507-516.
Rodriguez,
J.M., Maietta, P., Ezkurdia, I., Pietrelli, A.,
Wesselink, J.J., Lopez, G., Valencia, A. & Tress, M.L. 2013. APPRIS:
Annotation of principal and alternative splice isoforms. Nucleic Acids
Research41(Database
issue): D110-117.
Sang,
S., Zhang, C. & Shan, J. 2019. Pyrroline-5-carboxylate reductase 1
accelerates the migration and invasion of nonsmall cell lung cancer in vitro. Cancer Biotherapy and Radiopharmaceuticals 34(6): 380-387.
She,
Y., Mao, A., Li, F. & Wei, X. 2019. P5CR1 protein expression and the effect
of gene-silencing on lung adenocarcinoma. PeerJ 7: e6934.
Shimano,
H., Yahagi, N., Amemiya-Kudo, M., Hasty, A.H., Osuga,
J., Tamura, Y., Shionoiri, F., Iizuka,
Y., Ohashi, K., Harada, K., Gotoda, T., Ishibashi, S.
& Yamada, N. 1999. Sterol regulatory
element-binding protein-1 as a key transcription factor for nutritional
induction of lipogenic enzyme genes. Journal of Biological Chemistry 274(50): 35832-35839.
Siegel,
R.L., Giaquinto, A.N. & Jemal, A. 2024. Cancer statistics, 2024. CA: A Cancer
Journal for Clinicians 74(1): 12-49.
Strell,
C., Lang, K., Niggemann, B., Zaenker, K.S. & Entschladen, F. 2010. Neutrophil granulocytes promote the
migratory activity of MDA-MB-468 human breast carcinoma cells via ICAM-1. Experimental
Cell Research 316(1): 138-148.
Subramanian,
A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A.,
Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S. & Mesirov, J.P. 2005.
Gene set enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. Proceedings of the National Academy of
Sciences 102(43): 15545-15550.
Sun,
F., Yang, X., Jin, Y., Chen, L., Wang, L., Shi, M., Zhan, C., Shi, Y. &
Wang, Q. 2017. Bioinformatics analyses of the differences between lung
adenocarcinoma and squamous cell carcinoma using The Cancer Genome Atlas
expression data. Molecular Medicine Reports 16(1): 609-616.
Surien, O.,
Ghazali, A.R. & Masre, S.F. 2020.
Histopathological effect of pterostilbene as chemoprevention in N-nitroso-tri-chloroethylurea (NTCU)-Induced lung squamous cell carcinoma
(SCC) mouse model. Histology and Histopathology 35(10): 1159-1170.
Suzuki,
A., Onodera, K., Matsui, K., Seki, M., Esumi, H.,
Soga, T., Sugano, S., Kohno,
T., Suzuki, Y. & Tsuchihara, K. 2019. Characterization of cancer omics and drug
perturbations in panels of lung cancer cells. Scientific Reports 9(1): 19529.
Taghehchian, N., Moghbeli, M., Mashkani, B. & Abbaszadegan, M.R. 2021. The level of
mesenchymal-epithelial transition autophosphorylation is correlated with
esophageal squamous cell carcinoma migration. Iranian Biomedical Journal 25(4): 243.
Tamiya,
M., Kobayashi, M., Morimura, O., Yasue, T., Nakasuji, T., Satomu, M., Kohei,
O., Takayuki, S., Morishita, N., Suzuki, H., Sasada, S., Okamoto, N.,
Hirashima, T. & Kawase, I. 2013. Clinical significance of the serum
crosslinked N-telopeptide of type i collagen as a
prognostic marker for non-small-cell lung cancer. Clinical Lung Cancer 14(1): 50-54.
Tan,
A.C. & Tan, D.S.W. 2022. Targeted therapies for lung cancer patients with
oncogenic driver molecular alterations. Journal of Clinical Oncology 40(6): 611-625.
Tsai,
J.H. & Yang, J. 2013. Epithelial–mesenchymal plasticity in carcinoma
metastasis. Genes & Development 27(20): 2192-2206.
Valencia,
K., Sainz, C., Bértolo, C., de Biurrun,
G., Agorreta, J., Azpilikueta,
A., Larrayoz, M., Bosco, G., Zandueta, C., Redrado, M., Redín, E., Exposito, F., Serrano, D., Echepare,
M., Ajona, D., Melero, I., Pio, R., Thomas, R.,
Calvo, A. & Montuenga, L.M. 2022. Two cell line models to study multiorganic metastasis and immunotherapy in lung squamous cell carcinoma. Disease Models
& Mechanisms 15(1): dmm049137.
Verstrepen, L., Bekaert,
T., Chau, T.L., Tavernier, J., Chariot, A. & Beyaert, R. 2008. TLR-4, IL-1R
and TNF-R signaling to NF-κB: Variations on a
common theme. Cellular and Molecular Life Sciences 65: 2964-2978.
Voiles,
L., Lewis, D.E., Han, L., Lupov, I.P., Lin, T.L., Robertson,
M.J., Petrache, I. & Chang, H.C. 2014. Overexpression of type VI collagen
in neoplastic lung tissues. Oncology Reports 32(5): 1897-1904.
Wang,
B.Y., Huang, J.Y., Chen, H.C., Lin, C.H., Lin, S.H., Hung, W.H. & Cheng,
Y.F. 2020. The comparison between adenocarcinoma and squamous cell carcinoma in
lung cancer patients. Journal of Cancer Research and Clinical Oncology 146(3): 43-52.
Wang,
D., Wang, L., Zhang, Y., Yan, Z., Liu, L. & Chen, G. 2019. PYCR1 promotes
the progression of non-small-cell lung cancer under the negative regulation of
miR-488. Biomedicine & Pharmacotherapy 111: 588-595.
Wang,
Q.L. & Liu, L. 2019. PYCR1 is associated with papillary renal cell
carcinoma progression. Open Medicine 14(1): 586-592.
Wang,
Y., Zhang, Z., Garbow, J.R., Rowland, D.J., Lubet, R.A., Sit, D., Law, F. &
You, M. 2009. Chemoprevention of lung squamous cell carcinoma in mice by a
mixture of Chinese herbs. Cancer Prevention Research 2(7): 634-640.
Wang,
Y., Zhang, Z., Yan, Y., Lemon, W.J., Laregina, M., Morrison, C. & Lubet, R.
2004. A chemically induced model for squamous cell carcinoma of the lung in mice : Histopathology and strain susceptibility. Cancer
Research 64(5): 1647-1654.
Weijin, F., Zhibin, X., Shengfeng, Z., Xiaoli, Y., Qijian,
D., Jiayi, L., Qiumei, L., Yilong, C., Hua,
M., Deyun, L. & Jiwen, C. 2019. The clinical significance of PYCR1 expression in renal
cell carcinoma. Medicine 98(28): e16384.
Williams,
C.S., Bernard, J.K., Demory Beckler, M., Almohazey,
D., Washington, M.K., Smith, J.J. & Frey, M.R. 2015. ERBB4 is
over-expressed in human colon cancer and enhances cellular transformation. Carcinogenesis 36(7): 710-718.
Xiong,
D., Pan, J., Yin, Y., Jiang, H., Szabo, E., Lubet, R.A., Wang, Y. & You, M.
2018. Novel mutational landscapes and expression signatures of lung squamous
cell carcinoma. Oncotarget 9(7): 7424-7441.
Xu,
S., Xu, H., Wang, W., Li, S., Li, H., Li, T., Zhang, W., Yu, X. & Liu, L.
2019. The role of collagen in cancer: From bench to bedside. Journal of
Translational Medicine 17(1): 309.
Yamano,
S., Gi, M., Tago, Y., Doi, K., Okada, S., Hirayama, Y., Tachibana, H., Ishii,
N., Fujioka, M., Tatsumi, K. & Wanibuchi, H.
2016. Role of deltaNp63posCD44vpos cells in the development of N-nitroso-tris-chloroethylurea-induced peripheral-type mouse lung squamous
cell carcinomas. Cancer Science 107(2): 123-132. doi:10.1111/cas.12855
Yi,
M., Dong, Y., Zheng, M., Barr, M.P., Roviello, G., Zhihuang, H. & Liu, J. 2024. Identification of a
prognostic gene signature in patients with cisplatin resistant squamous cell
lung cancer. Journal of Thoracic Disease 16: 4567-4583.
Yoshimoto,
T., Inoue, T., Iizuka, H., Nishikawa, H., Sakatani, M., Ogura, T., Hirao, F.
& Yamamura, Y. 1980. Differential induction of squamous cell carcinomas and
adenocarcinomas in mouse lung by intratracheal instillation of benzo(a)pyrene
and charcoal powder. Cancer Research 40(11): 4301-4307.
Yoshimoto,
T., Hirao, F., Sakatani, M., Nishikawa, H., Ogura, T. & Yamamura, Y. 1977.
Induction of squamous cell carcinoma in the lung of C57BL/6 mice by
intratracheal instillation of benzo [a] pyrene with charcoal powder. GANN
Japanese Journal of Cancer Research 68(3): 343-352.
Yu,
J.M., Sun, W., Hua, F., Xie, J., Lin, H., Zhou, D.D. & Hu, Z.W. 2015. BCL6
induces EMT by promoting the ZEB1-mediated transcription repression of
E-cadherin in breast cancer cells. Cancer Letters 365(2): 190-200.
Zakaria,
M.A., Aziz, J., Rajab, N.F., Chua, E.W. & Masre,
S.F. 2022. Tissue rigidity increased during carcinogenesis of NTCU-induced lung
squamous cell carcinoma in vivo. Biomedicines 10(10): 2382.
Zakaria,
M.A., Rajab, N.F., Chua, E.W., Selvarajah, G.T. & Masre,
S.F. 2021a. NTCU induced pre-malignant and malignant stages of lung squamous
cell carcinoma in mice model. Scientific Reports 11(1): 22500.
Zakaria,
M.A., Rajab, N.F., Chua, E.W., Selvarajah, G.T. & Masre,
S.F. 2021b. Roles of Rho‑associated kinase in lung cancer. International
Journal of Oncology 58(2): 185-198.
Zeng,
T., Zhu, L., Liao, M., Zhuo, W., Yang, S., Wu, W. & Wang, D. 2017.
Knockdown of PYCR1 inhibits cell proliferation and colony formation via cell
cycle arrest and apoptosis in prostate cancer. Medical Oncology 34(2):
27.
Zhang,
X.C., Wang, J., Shao, G.G., Wang, Q., Qu, X., Wang, B., Moy, C., Fan,
Y., Albertyn, Z., Huang, X., Zhang, J., Qiu, Y.,
Platero, S., Lorenzi, M.V., Zudaire,
E., Yang, J., Cheng, Y., Xu, L. & Wu, Y.L. 2019. Comprehensive genomic and immunological characterization of Chinese
non-small cell lung cancer patients. Nature Communications 10(1): 1772.
Zhang,
Z., Wang, Y., Chen, L. & Li, Z. 2019. Protective effects of the suppressed
NF‐κB/TLR4 signaling pathway on oxidative
stress of lung tissue in rat with acute lung injury. The Kaohsiung Journal
of Medical Sciences 35(5): 265-276.
Zhao,
W., Choi, Y. La, Song, J. Y., Zhu, Y., Xu, Q., Zhang, F., Jiang, L., Cheng,
J., Zheng, G. & Mao, M. 2016. ALK, ROS1 and RET
rearrangements in lung squamous cell carcinoma are very rare. Lung Cancer 94: 22-27.
Zilionis, R.,
Engblom, C., Pfirschke, C., Savova, V., Zemmour, D., Saatcioglu, H.D., Krishnan, I., Maroni, G., Meyerovitz, C.V., Kerwin, C.M.,
Choi, S., Richards, W.G., De Rienzo, A., Tenen, D.G., Bueno, R., Levantini, E., Pittet, M.J. & Klein, A.M. 2019. Single-cell transcriptomics of human and mouse lung
cancers reveals conserved myeloid populations across individuals and species. Immunity 50(5): 1317-1334.e.10.
*Corresponding
author; email: sitifathiah@ukm.edu.my
|